On the Deligne-Simpson problem and its weak version

نویسنده

  • Vladimir Petrov Kostov
چکیده

We consider the Deligne-Simpson problem (DSP) (resp. the weak DSP): Give necessary and sufficient conditions upon the choice of the p + 1 conjugacy classes cj ⊂ gl(n,C) or Cj ⊂ GL(n,C) so that there exist irreducible (p+ 1)-tuples (resp. (p+ 1)-tuples with trivial centralizers) of matrices Aj ∈ cj with zero sum or of matrices Mj ∈ Cj whose product is I. The matrices Aj (resp. Mj) are interpreted as matrices-residua of Fuchsian linear systems (resp. as monodromy matrices of regular linear systems) of differential equations with complex time. In the paper we give sufficient conditions for solvability of the DSP in the case when one of the matrices is with distinct eigenvalues.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

0 Some examples related to the Deligne - Simpson problem ∗

In the present paper we consider some examples relative to the Deligne-Simpson problem (DSP) which is formulated like this: Give necessary and sufficient conditions upon the choice of the p+ 1 conjugacy classes cj ⊂ gl(n,C), resp. Cj ⊂ GL(n,C), so that there exist irreducible (p+1)-tuples of matrices Aj ∈ cj , A1 + . . .+Ap+1 = 0, resp. of matrices Mj ∈ Cj , M1 . . .Mp+1 = I. By definition, the...

متن کامل

The Deligne-Simpson problem – a survey

The Deligne-Simpson problem (DSP) (resp. the weak DSP) is formulated like this: give necessary and sufficient conditions for the choice of the conjugacy classes Cj ⊂ GL(n,C) or cj ⊂ gl(n,C) so that there exist irreducible (resp. with trivial centralizer) (p + 1)-tuples of matrices Mj ∈ Cj or Aj ∈ cj satisfying the equality M1 . . .Mp+1 = I or A1+ . . .+Ap+1 = 0. The matrices Mj and Aj are inter...

متن کامل

Ja n 20 01 Examples illustrating some aspects of the weak Deligne - Simpson problem ∗

To the memory of my mother Abstract We consider the variety of (p + 1)-tuples of matrices A j (resp. M j) from given conju-gacy classes c j ⊂ gl(n, C) (resp. C j ⊂ GL(n, C)) such that A 1 +. .. + A p+1 = 0 (resp. M 1. .. M p+1 = I). This variety is connected with the weak Deligne-Simpson problem: give necessary and sufficient conditions on the choice of the conjugacy classes c j ⊂ gl(n, C) (res...

متن کامل

The connectedness of some varieties and the Deligne-Simpson problem

The Deligne-Simpson problem (DSP) (resp. the weak DSP) is formulated like this: give necessary and sufficient conditions for the choice of the conjugacy classes Cj ⊂ GL(n,C) or cj ⊂ gl(n,C) so that there exist irreducible (resp. with trivial centralizer) (p + 1)-tuples of matrices Mj ∈ Cj or Aj ∈ cj satisfying the equality M1 . . .Mp+1 = I or A1+ . . .+Ap+1 = 0. The matrices Mj and Aj are inter...

متن کامل

Lecture 18: Deligne-simpson Problem

The Deligne-Simpson problem asks to find a condition on conjugacy classes C1, . . . , Ck ⊂ Matn(C) such that there are matrices Yi ∈ Ci with (1) ∑k i=1 Yi = 0, (2) and there are no proper subspaces in C stable under all Yi. Crawley-Boevey reduced this problem to checking if there is an irreducible representation in Rep(Π(Q), v) for suitable Q, λ, v produced from C1, . . . , Ck. Recall, Section ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008